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Abstract. A theoretical investigation has been made of nonlinear propagation of ultra-low-frequency elec-
tromagnetic waves in a magnetized two fluid (negatively charged dust and positively charged ion fluids)
dusty plasma. These are modified Alfvén waves for small value of θ and are modified magnetosonic waves
for large θ, where θ is the angle between the directions of the external magnetic field and the wave propa-
gation. A nonlinear evolution equation for the wave magnetic field, which is known as Korteweg de Vries
(K-dV) equation and which admits a stationary solitary wave solution, is derived by the reductive per-
turbation method. The effects of external magnetic field and dust characteristics on the amplitude and
the width of these solitary structures are examined. The implications of these results to some space and
astrophysical plasma systems, especially to planetary ring-systems, are briefly mentioned.

PACS. 52.35.Hr Electromagnetic waves (e.g., electron-cyclotron, Whistler, Bernstein, upper hybrid, lower
hybrid) – 52.35.Sb Solitons; BGK modes – 52.35.Mw Nonlinear waves and nonlinear wave propagation
(including parametric effects, mode coupling, ponderomotive effects, etc.)

1 Introduction

Nowadays, there has been a rapidly growing interest in un-
derstanding wave phenomena in dusty plasmas (plasmas
with extremely massive and highly charged dust grains)
which are ubiquitous in laboratory, space, and astrophysi-
cal plasma environments, such as, cometary tails, asteroid
zones, planetary rings, interstellar medium, earth’s envi-
ronment, etc. [1–5]. It has been shown both theoretically
and experimentally that the presence of extremely massive
and highly charged static dust grains modifies the exist-
ing plasma wave spectra [6–10], whereas the dynamics of
these extremely massive and highly charged dust grains
introduces new eigen modes [11–17]. These modes are,
for example, low frequency dust-acoustic mode [11–13],
dust ion-acoustic mode [14], dust-lower hybrid mode [15],
dust-drift mode [16,17], etc. A large number of inves-
tigations [11–22] have focussed attention on linear and
nonlinear properties of these electrostatic modes in dusty
plasmas. Recently, there has also been much interest in dif-
ferent new electromagnetic eigen modes in dusty plasmas
and a very limited number of attempts have been made
on propagation of low frequency electromagnetic modes
[23–25] in such a dusty plasma system. Verheest and
Buti [23] and Reddy et al. [24] have investigated the prop-
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agation of low frequency electromagnetic Alfvén waves
(propagating along the ambient magnetic field) in a mag-
netized multi-species dusty plasma. Rao [25] has made a
linear analysis of low frequency magnetosonic mode (prop-
agating perpendicular to the ambient magnetic field) in a
magnetized dusty plasma. The present work has consid-
ered a two fluid magnetized dusty plasma system, consist-
ing of a highly negatively charged, extremely massive dust
fluid and positively charged ion fluid, and has made an in-
vestigation of obliquely propagating electromagnetic soli-
tary structures which are due to the modified Alfvén mode
for small θ and due to the modified magnetosonic mode
for large θ, where θ is the angle between the directions of
the external magnetic field and the wave propagation.

The paper is organized as follows. The basic equations
governing our plasma system is presented in Section 2.
The Korteweg de Vries (K-dV) equation is derived by em-
ploying the reductive perturbation method in Section 3.
The solitonic solution of this K-dV equation is obtained
and the properties of these electromagnetic solitary struc-
tures are discussed in Section 4. Finally, a brief discussion
is given in Section 5.

2 Governing equations

We consider a two-component magnetized dusty plasma
system consisting of negatively charged (extremely mas-
sive) dust and positively charged ion fluids. This plasma
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system is assumed to be immersed in an external static
magnetic field (B0) which lies in the y–z plane. Thus, at
equilibrium we have ni0 = Zdnd0, where ni0 (nd0) is the
equilibrium ion (dust) number density and Zd is the num-
ber of electrons residing on the dust grains. We assumed
here that the electron number density is highly depleted
due to the attachment of most of all electrons to the sur-
face of the highly charged and extremely massive dust
grains. This model is relevant to planetary ring-systems
(e.g. Saturn’s F-ring [1,14]) and to laboratory experi-
ment [13]. The macroscopic state of this plasma system
may be described by the continuity equation, the equa-
tion of motion, and the Maxwell system of equations:
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where s (= i,d) denotes the species, namely, ion and dust;
ms, qs, and ns are, respectively, mass, charge, and number
density of the species s; us is the hydrodynamic velocity,
Ps = nskBTs with kBTs being the thermal energy; E is the
electric field and B is the magnetic field; c is the speed of
light in free space.

We look at the waves propagating along the z-axis (it
should be noted that the external magnetic field B0 makes
an angle θ with the z-axis) where all wave quantities will
depend only on z and t. We consider cold dust fluid, quasi-
neutrality condition, and negligible the contribution due
to the displacement current. Then, one can reduce our
basic equations (1–6) to
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where n is the dust particle number density normalized to
nd0; BT is the total magnetic field vector normalized to
B0; d/dt = ∂/∂t+ udz∇; VA = B0/

√
4πnd0(Zdmi +md);

Cd =
√
ZdTi/(Zdmi +md); ωci = eB0/(mic); ωcd =

ZdeB0/(mdc).

3 Derivation of the K-dV equation

To study electromagnetic solitary waves in the dusty
plasma system under consideration, we construct a weakly
nonlinear theory of the low frequency electromagnetic
waves. We first consider a frame of reference moving with
the solitary wave and assume the amplitude to be a small
quantity of order of ε. These assumptions lead to the scal-
ing of the independent variables through the standard
Korteweg-de Vries (K-dV) stretching [26–29]

ξ = ε1/2(z − Vpt)
τ = ε3/2t

}
(10)

where Vp is the wave phase velocity and the small quan-
tity ε is a measure of the solitary wave amplitude, i.e., a
measure of the weakness of the dispersion or of the non-
linear effects. We can expand the perturbed quantities n,
udz,y,x, and BT

x,y (it should be noted that BT
z = cos θ)

about their equilibrium values in powers of ε as:
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Now, substituting (10, 11) in (7–9) and equating the vari-
ous powers of ε, a sequence of equations can be obtained.
Equating the coefficients of ε3/2 one obtains a set of equa-
tions which can be simplified as
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(12)

The last equation represents the general dispersion rela-
tion for the low frequency electromagnetic waves in the
magnetized dusty plasma under consideration. It is obvi-
ous that for parallel propagation (θ = 0) this (with + sign)
reduces to the simplest form of the dispersion relation
for the dust Alfvén mode [23,24], in which the magnetic
pressure (B2

0/4π) gives rise to the restoring force and the
plasma mass density (ni0mi + nd0md) provides the iner-
tia, and that for perpendicular propagation (θ = 90◦) this
reduces to the dispersion relation for the magnetosonic
mode [25] in which the sum of magnetic and ion-thermal
pressures (B2

0/4π + ni0kBTi) gives rise to the restoring
force and the plasma mass density (ni0mi + nd0md) pro-
vides the inertia. It should be mentioned that for zero
external magnetic field (VA = 0) this magnetosonic mode
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turns into the dust-acoustic mode studied by a number of
authors in last few years [11–13,19–22].

The next set of the equations, which are obtained by
substituting (10, 11) into (7–9) and equating of ε2, can be
written as
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The last set of the equations, which are obtained by sub-
stituting (10, 11) into (7–9) and equating of ε5/2, are ex-
pressed as
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Now, using (12–17), one can eliminate n(2), u(2)
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(19)

This equation (18), which is nothing but the K-dV equa-
tion, describes the nonlinear propagation of low frequency
electromagnetic waves (due to the oscillations of dust par-
ticles and ions) in the magnetized dusty plasma system
under consideration.

4 Solitonic solution of the K-dV equation

The steady state solitonic solution of the K-dV equation
is obtained by considering a moving coordinate (moving
with speed u0) η = ξ − u0τ , and imposing the appropri-
ate boundary conditions, viz., B(1)

y → 0, dB(1)
y /dη → 0,

d2B
(1)
y /dη2 → 0 at η → ±∞. Thus, one can express the

steady state solitonic solution of this K-dV equation as

B(1)
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ymsech2[(ξ − u0τ)/δ], (20)

where the amplitude B
(1)
ym (normalized to B0) and the

width δ are given by

B
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ym = 3u0/A,
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√
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}
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It is obvious from (19) that since Vp ≥ Cd, A is always
positive. Therefore, the sign of D defines the nature of
these electromagnetic solitary structures. For D < 0, we
find subsonic (u0 < 0) rarefactive electromagnetic solitary
structures and forD > 0, we find supersonic (u0 > 0) com-
pressive electromagnetic solitary structures. It is shown
that for the pure magnetosonic waves (θ = π/2) D is al-
ways positive, i.e., only compressive electromagnetic soli-
tons exist and for θ < π/2 there exists rarefactive electro-
magnetic K-dV solitons if

V 2
A cos2 θ

V 2
p − V 2

A cos2 θ
>

ωcdωci

(ωci − ωcd)2
· (22)

It should be mentioned here that these K-dV solitons do
not exist for the shear Alfvén mode (θ = 0) since in this
case cos θ = 1 and Vp = VA. In this case one should derive
the derivative nonlinear Schrödinger (DNLS) equation [31]
and study the properties of these Alfvén solitons which are
investigated elsewhere [32].

In order to have some numerical appreciation of
these results we have made numerical calculations for
usual space and astrophysical dusty plasma parameters
[3,33]: md = 10−12 gm, mi = 10−23 gm, nd0 = 10 cm−3,
Ti = 0.1 eV, Zd = 105–107, and B0 = 0.01–1.0 Gauss,
and have shown how the height and the width of these
electromagnetic solitary structures change with the mag-
nitude of the external magnetic field (B0) and of the dust
grain charge (Zd). These are displayed in Figures 1 and 2.
These show that as we increase the magnitude of the ex-
ternal magnetic field, both the amplitude and the width
of these solitary structures increase. These also show that
as we increase the magnitude of the dust grain charge, the
amplitude decreases whereas the width increases.
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Fig. 1. Variation of the amplitude (B
(1)
ym) of the solitary waves

with the external magnetic field (B0) for u0 = Cd, md = 10−12,
mi = 10−23, nd0 = 10 cm−3, Ti = 0.1 eV, Zd = 105 (curve 1),
Zd = 106 (curve 2), and Zd = 107 (curve 3).

Fig. 2. Variation of the width (δ) of the solitary waves with
the external magnetic field (B0) for u0 = Cd, md = 10−12,
mi = 10−23, nd0 = 10 cm−3, Ti = 0.1 eV, Zd = 105 (curve 1),
Zd = 106 (curve 2), and Zd = 107 (curve 3).

5 Discussion

A self consistent and general description of weakly non-
linear low-frequency electromagnetic waves (propagating
obliquely with the ambient magnetic field) in a magne-
tized two component dusty plasma consisting of highly
negatively charged, extremely massive dust and positively
charged ion fluids, has been presented. This investigation,
where the nonlinear K-dV equation and its solitonic so-
lution are derived, is based on the reductive perturba-

tion method and fluid theory. It is assumed here that the
electron number density is highly depleted due to the at-
tachment of most of all electrons to the surface of highly
charged and extremely massive dust grains. This assump-
tion is relevant to planetary ring-systems (e.g. Saturn’s
F-ring [1,14]) and laboratory experiment [13]. The cold
dust fluid and the quasi-neutrality condition are also con-
sidered. The results, which have been found in this inves-
tigation, may be pointed out as follows:

(i) It has been found that there exists linear/nonlinear
ultra-low-frequency dust-electromagnetic modes
(modified shear or compressional Alfvén waves
propagating obliquely with the ambient magnetic
filed) in the magnetized dusty plasma system under
consideration. It is also observed that, for parallel
propagation (θ = 0), the linear mode becomes the
shear dust-Alfvén mode which doesn’t compress
either the magnetic field or the plasma density, but
bends (shears) the magnetic field lines and that,
for finite θ, this linear mode reduces to the com-
pressional Alfvén mode which causes compression of
both the plasma density and magnetic field lines;

(ii) it has been found that the dusty plasma system may
also support obliquely propagating electromagnetic
solitary waves, associated with the compressional
Alfvén or magnetosonic mode. It is shown here that,
for perpendicular propagation (θ = π/2), there exists
only super magnetosonic (u0 > 0) compressive soli-
tary structures [30]. However, for a certain range of
θ, satisfying the condition (22), super magnetosonic
(u0 > 0) compressive solitary structures may change
to sub-magnetosonic (u0 < 0) rarefactive ones. The
nonlinear analysis presented here is not valid for ex-
act parallel propagation (θ = 0) in which case one
should derive the derivative nonlinear Schrödinger
(DNLS) equation [31] and examine the properties of
these Alfvén solitons [32];

(iii) it has been shown that as we increase the magnitude
of the external magnetic field, both the amplitude
and the width of these solitary structures increase.
It is also found here that as we increase the magni-
tude of the dust grain charge, the amplitude decreases
whereas the width increases.

It should be mentioned here that for our numeri-
cal calculations we choose values of different parameters
which are, of course, typical for a number of space dusty
plasma systems, particularly, for planetary ring systems
(typical approximate dusty plasma parameters [1,3,33] in
planetary ring systems are nd0 ' 10−6–10 cm−3, Zd '
10–105, Ti ' 0.01–1.0 eV, md ' 10−13–10−7 gm,
B0 ' 10−3–10 G, etc.) and cometary environments (typ-
ical approximate plasma parameters [1,3,33] in dust re-
gions (tails) of Halley’s comet are nd0 ' 10−7–10 cm−3,
Zd ' 104–106, Ti ' 0.001–0.1 eV, md ' 10−13–10−7 gm,
B0 '10−3–0.1 G, etc.)

It may be pointed out that these results might be use-
ful for understanding the electromagnetic disturbances in
some space and astrophysical dusty plasma systems, es-
pecially in planetary ring systems, because the planetary



A.A. Mamun and A.A. Gebreel: Nonlinear ultra-low-frequency electromagnetic modes in dusty plasma 305

magnetic field lines from a nearly aligned dipole (Jupiter,
Saturn, etc.) are perpendicular to the equatorial plane in
which the bulk of the ring material moves.

It may be added here that the effects of inhomogene-
ity in plasma density and in the ambient magnetic field on
these electromagnetic solitary structures and their insta-
bilities are also problems of great importance but beyond
the scope of the present work.
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